Pearson Edexcel

Mark Scheme (Results)

Summer 2022

Pearson Edexcel International GCSE
In Single Science Award (4SS0) Paper 1P

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022
Question Paper Log Number P71960A
Publications Code 4SSO_1P_2206_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer Notes	Marks
1 (a)	D (the Sun); A is incorrect because a comet is the smallest object B is incorrect because the Earth is smaller than the Sun C is incorrect because the Earth and the Sun are larger than the Moon	1
(b)	A (alpha); B is incorrect because beta is less ionising than alpha C is incorrect because gamma is less ionising than alpha D is incorrect because gamma has a higher frequency than UV so is more ionising	1
(c)	B (ohm); A is incorrect because ampere is the unit for electric current C is incorrect because volt is the unit for voltage D is incorrect because watt is the unit for power	1
(d)	D (x-ray); A is incorrect because infrared has a longer wavelength than ultraviolet and x ray B is incorrect because microwave has the longest wavelength C is incorrect because ultraviolet has a longer wavelength than x-ray	1
(e)	C (273K); A is incorrect because this is subtracting 273, rather than adding 273 B is incorrect because this is adding 3 , rather than adding 273 D is incorrect because this is adding 373, rather than adding 273	1

Total for question $1=5$ marks

Total for question $3=7$ marks

Question number	Answer	Notes	Marks
4 (a) (i) (ii) (iii) (iv)	```GPE = mass }\timesg\times\mathrm{ height; substitution; evaluation; e.g. (GPE =) 0.52 < 10 < 0.82 (GPE =) 4.3(J) identical answer to (ii); selection of KE = 1/2 }\times\mathrm{ mass }\times\mp@subsup{\mathrm{ speed }}{}{2}\mathrm{ ; substitution; rearrangement; evaluation; e.g. KE = 1/2 }\timesm\times\mp@subsup{v}{}{2 4.3=1/2\times0.52 < v v= J[2 < 4.3/0.52] (v =) 4.1 (m/s)```	allow standard symbols and rearrangements e.g. GPE $=m \times g \times h$ allow use of $\mathrm{g}=9.8,9.81$ -1 for clear POT error allow 4.2, 4.26, 4.264, 4.17872, 4.18... allow ecf from (ii) expect 4.3 (J) seen or implied allow ecf from (iii) allow alternative method using $\mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{as}$ allow 4.0-4.1 (m / s)	1 2 1 4
(b)	any three from: MP1. oil is more dense / viscous (than air); MP2. force of friction now present / greater (than before); MP3. ball now does work against friction; MP4. decrease in GPE same as before; MP5. idea that energy is conserved; MP6. some energy transferred to thermal store (of air/ball); MP7. means less energy transferred to KE;	allow oil is thicker allow drag, fluid/liquid resistance for friction allow upthrust is greater ignore resistance	3

Total for question 4 = 11 marks

Question number	Answer	Notes	Marks
5 (a)	filament lamp / LED / ammeter; added in series with other components;	marks may be awarded if shown on circuit diagram allow other components that would give a visual indication e.g. buzzer, motor etc. DOP	2
(b) (i) (ii) (iii)	```electron(s); substitution into charge \(=\) current \(\times\) time; conversion of mA to A ; evaluation of total charge; evaluation of number of charged particles; e.g. charge \(=160 \times 25\) charge \(=0.16 \times 25\) (charge \(=\)) 4.0 (C) number of particles \(=\left(4.0 / 1.6 \times 10^{-19}\right)=2.5 \times 10^{19}\) fewer charged particles / electrons (each second); with any two from: current (in circuit) is decreased; voltage is the same; current is rate of flow of charge;```	-1 for POT error 4000 scores 2 marks	1

Total for question $5=10$ marks

Question number	Answer	Notes	Marks
6 (a)	any four from: MP1. neutron absorbed by nucleus; MP2. uranium-235 becomes uranium-236; MP3. nucleus splits; MP4. producing (two) daughter nuclei; MP5. producing neutrons; MP6. releasing/transferring energy;	condone atom for nucleus throughout allow collides for absorbs allow named daughter nuclei e.g. krypton and barium etc. ignore daughter cells condone producing energy, radiation	4
(b) (i) (ii)	idea that products of fission/radiation are harmful/dangerous; idea that shielding absorbs radiation / fission products; particles collide with walls (of pipes); force is exerted on walls; pressure is force on an area;	allow specific danger e.g. daughter nuclei are radioactive etc. allow idea that radiation cannot penetrate concrete ignore collisions with other particles allow $p=F / A$	2 3

Total for question $6=9$ marks

Question number	Answer	Notes	Marks
7 (a) (i) (ii)	```(unbalanced) force = mass }\times\mathrm{ acceleration; substitution; rearrangement; evaluation to at least 2s.f.; e.g. 223(000) = 10600 }\times\mathrm{ acceleration acceleration = 223(000) / 10600 acceleration = 21.03...(m/s}\mp@subsup{\textrm{s}}{}{2}```	allow standard symbols and rearrangements $\text { e.g. } F=m \times a$ ignore units ignore units reject if $\times 1000$ performed at the end of calculation allow 21, 21.0, $21.04\left(\mathrm{~m} / \mathrm{s}^{2}\right)$	1 3
(b)	```substitution into a = v-u / t; rearrangement; evaluation; e.g. 20 = 330(-0) / time time = 330 / 20 (time =) 17 (s)```	allow 15-17 (s)	3

Total for question $7=7$ marks

