

Mark Scheme (Results)

Summer 2022

Pearson Edexcel International GCSE In Single Science Award (4SS0) Paper 1P

https://xtremepape.rs/

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022 Question Paper Log Number P71960A Publications Code 4SS0_1P_2206_MS All the material in this publication is copyright © Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a)	D (the Sun); A is incorrect because a comet is the smallest object B is incorrect because the Earth is smaller than the Su C is incorrect because the Earth and the Sun are large		1
(b)	A (alpha); B is incorrect because beta is less ionising than alpha C is incorrect because gamma is less ionising than alph D is incorrect because gamma has a higher frequency t ionising		1
(c)	B (ohm); A is incorrect because ampere is the unit for electric of C is incorrect because volt is the unit for voltage D is incorrect because watt is the unit for power	urrent	1
(d)	D (x-ray); A is incorrect because infrared has a longer wavelengt ray B is incorrect because microwave has the longest wave C is incorrect because ultraviolet has a longer waveler	elength	1
(e)	C (273 K); A is incorrect because this is subtracting 273, rather th B is incorrect because this is adding 3, rather than add D is incorrect because this is adding 373, rather than a	ling 273	1

Total for question 1 = 5 marks

	Question number	Answer	Notes	Marks
2	(a) (i)	normal drawn perpendicular to boundary at point where ray of light is incident;	line can be drawn on either side of boundary or passing through boundary judge perpendicular by eye	1
	(ii)	straight refracted ray drawn passing into block and continuing path to the right; refraction drawn correctly;	refracted ray must be labelled DOP	2
	(iii)	straight reflected ray drawn reflecting from boundary and continuing path to the right; angle of reflection drawn equal to angle of incidence;	reflected ray must be labelled DOP	2
		incident ray of light normal	reflected ray	
		glass block refracted ray		
	(b)	 any six from: MP1. suitable light source; MP2. draw around block on paper; MP3. mark point where light will enter block; MP4. shine light into block and measure angle of incidence; MP5. use of protractor (to measure angle); MP6. mark point where ray exits block; 	allow any marking point if clear on diagram e.g. ray box, laser, light box allow idea of drawing normal at point where light enters block	6
		 MP7. use of ruler to draw path of (refracted) ray; MP8. measure angle of refraction; MP9. repeat for different angles of incidence; MP10. use of graph to show data; 		

Question number		Answer	Notes	Marks
3 (a)		similarity - both have (approximately) circular orbits; difference - planets orbit stars, but moons orbit planets;	both marks can be awarded if clear in labelled diagram allow both have a constant orbital speed allow slightly elliptical for circular both needed for the mark ignore different speeds, radii, time periods	2
(b)	(i)	idea that "planet" variable is categoric;	allow discontinuous, discrete for categoric allow idea that planet is not a continuous variable	1
((ii)	correct reading of either Jupiter or Uranus orbital speed; attempt at finding ratio; correct evaluation;	allow numbers seen anywhere in calculation Jupiter = 13.0, Uranus = 6.5-7.0 allow answers left as fractions inverted ratio	3
		e.g. Jupiter = 13.0 (km/s) OR Uranus = 6.75 (km/s) ratio = 13.0 / 6.75 ratio = 1.9	= 0.50-0.54 = 2 marks allow 6.5-7.0 for Uranus allow 6.75 / 13.0 allow 1.85-2.00	
((iii)	Earth is the closest planet to the Sun;	allow gravitational pull/strength (of Sun) greatest for Earth allow shortest time period	1

Total for question 3 = 7 marks

Answer	Notes	Marks
GPE = mass $\times g \times$ height;	allow standard symbols and rearrangements e.g. GPE = m × g × h	1
substitution;	allow use of g = 9.8, 9.81	2
evaluation;	-1 for clear POT error	
e.g. (GPE =) 0.52 × 10 × 0.82		
(GPE =) 4.3 (J)	allow 4.2, 4.26, 4.264, 4.17872, 4.18	
identical answer to (ii);	allow ecf from (ii) expect 4.3 (J)	1
selection of KE = $\frac{1}{2} \times \text{mass} \times \text{speed}^2$; substitution; rearrangement:	seen or implied allow ecf from (iii)	4
evaluation;		
	allow alternative method using v ² = u ² + 2as	
e.g. $KF = \frac{1}{2} \times m \times v^2$		
$4.3 = \frac{1}{2} \times 0.52 \times v^2$		
v = √[2 × 4.3 / 0.52] (v =) 4.1 (m/s)	allow 4.0-4.1 (m/s)	
any three from:		3
MP1. oil is more dense / viscous (than air); MP2. force of friction now present / greater (than before);	allow oil is thicker allow drag, fluid/liquid resistance for friction allow upthrust is greater ignore resistance	
MP3. ball now does work against friction; MP4. decrease in GPE same as before; MP5. idea that energy is conserved;		
 MP3. Idea that energy is conserved, MP6. some energy transferred to thermal store (of air/ball); MP7. means less energy transferred to KE; 		
	GPE = mass × g × height; substitution; evaluation; e.g. (GPE =) 0.52 × 10 × 0.82 (GPE =) 4.3 (J) identical answer to (ii); selection of KE = $\frac{1}{2}$ × mass × speed ² ; substitution; rearrangement; evaluation; e.g. KE = $\frac{1}{2}$ × m × v ² 4.3 = $\frac{1}{2}$ × 0.52 × v ² v = /[2 × 4.3 / 0.52] (v =) 4.1 (m/s) any three from: MP1. oil is more dense / viscous (than air); MP2. force of friction now present / greater (than before); MP3. ball now does work against friction; MP4. decrease in GPE same as before; MP5. idea that energy is conserved; MP6. some energy transferred to thermal store (of air/ball);	GPE = mass × g × height;allow standard symbols and rearrangements e.g. GPE = m × g × hsubstitution; evaluation;allow use of $g = 9.8, 9.81$ -1 for clear POT errore.g. (GPE =) 0.52 × 10 × 0.82 (GPE =) 4.3 (J)allow 4.2, 4.26, 4.264, 4.17872, 4.18identical answer to (ii);allow ecf from (ii) expect 4.3 (J)selection of KE = $\frac{1}{2}$ × mass × speed ² ; substitution; rearrangement; evaluation;seen or implied allow ecf from (iii) expect 4.3 (J)selection of KE = $\frac{1}{2}$ × m × $\frac{1}{2}$ × 1

Total for question 4 = 11 marks

Question number	Answer	Notes	Marks
5 (a)	filament lamp / LED / ammeter; added in series with other components;	marks may be awarded if shown on circuit diagram allow other components that would give a visual indication e.g. buzzer, motor etc. DOP	2
(b) (i)	electron(s);		1
(ii) (iii)	substitution into charge = current × time; conversion of mA to A; evaluation of total charge; evaluation of number of charged particles; e.g. charge = 160×25 charge = 0.16×25 (charge =) 4.0 (C) number of particles = $(4.0/1.6 \times 10^{-19}) = 2.5 \times 10^{19}$ fewer charged particles / electrons (each second); with any two from: current (in circuit) is decreased; voltage is the same; current is rate of flow of charge;	-1 for POT error 4000 scores 2 marks	4

Total for question 5 = 10 marks

	Question number	Answer	Notes	Marks
6	(a)	any four from: MP1. <u>neutron</u> absorbed by nucleus; MP2. uranium-235 becomes uranium-236; MP3. nucleus splits;	condone atom for nucleus throughout allow collides for absorbs	4
		MP4. producing (two) daughter nuclei;	allow named daughter nuclei e.g. krypton and barium etc. ignore daughter cells	
		MP5. producing neutrons; MP6. releasing/transferring energy;	condone producing energy, radiation	
	(b) (i)	idea that products of fission/radiation are harmful/dangerous; idea that shielding absorbs radiation / fission products;	allow specific danger e.g. daughter nuclei are radioactive etc. allow idea that radiation cannot penetrate concrete	2
	(ii)	particles collide with walls (of pipes); force is exerted on walls; pressure is force on an area;	ignore collisions with other particles allow p=F/A	3

Total for question 6 = 9 marks

	Question numbe		Answer	Notes	Marks
7	(a)	(i)	(unbalanced) force = mass × acceleration;	allow standard symbols and rearrangements e.g. F = m × a	1
		(ii)	substitution; rearrangement; evaluation to at least 2s.f.; e.g. 223(000) = 10600 × acceleration acceleration = 223(000) / 10600 acceleration = 21.03(m/s ²)	ignore units ignore units reject if ×1000 performed at the end of calculation allow 21, 21.0, 21.04 (m/s ²)	3
	(b)		substitution into a = v-u / t; rearrangement; evaluation; e.g. 20 = 330 (-0) / time time = 330 / 20 (time =) 17 (s)	allow 15-17 (s)	3

Total for question 7 = 7 marks

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom